Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 14 of 14 results
1.

Genetically encoded imaging tools for investigating cell dynamics at a glance.

blue red UV Cryptochromes LOV domains Phytochromes UV receptors Review
J Cell Sci, 11 Apr 2023 DOI: 10.1242/jcs.260783 Link to full text
Abstract: The biology of a cell is the sum of many highly dynamic processes, each orchestrated by a plethora of proteins and other molecules. Microscopy is an invaluable approach to spatially and temporally dissect the molecular details of these processes. Hundreds of genetically encoded imaging tools have been developed that allow cell scientists to determine the function of a protein of interest in the context of these dynamic processes. Broadly, these tools fall into three strategies: observation, inhibition and activation. Using examples for each strategy, in this Cell Science at a Glance and the accompanying poster, we provide a guide to using these tools to dissect protein function in a given cellular process. Our focus here is on tools that allow rapid modification of proteins of interest and how observing the resulting changes in cell states is key to unlocking dynamic cell processes. The aim is to inspire the reader's next set of imaging experiments.
2.

Upregulated flotillins and sphingosine kinase 2 derail AXL vesicular traffic to promote epithelial-mesenchymal transition.

blue CRY2/CIB1 MCF10A
J Cell Sci, 8 Apr 2022 DOI: 10.1242/jcs.259178 Link to full text
Abstract: Altered endocytosis and vesicular trafficking are major players during tumorigenesis. Flotillin overexpression, a feature observed in many invasive tumors and identified as a marker of poor prognosis, induces a deregulated endocytic and trafficking pathway called upregulated flotillin-induced trafficking (UFIT). Here, we found that in non-tumoral mammary epithelial cells, induction of the UFIT pathway promotes epithelial-to-mesenchymal transition (EMT) and accelerates the endocytosis of several transmembrane receptors, including AXL, in flotillin-positive late endosomes. AXL overexpression, frequently observed in cancer cells, is linked to EMT and metastasis formation. In flotillin-overexpressing non-tumoral mammary epithelial cells and in invasive breast carcinoma cells, we found that the UFIT pathway-mediated AXL endocytosis allows its stabilization and depends on sphingosine kinase 2, a lipid kinase recruited in flotillin-rich plasma membrane domains and endosomes. Thus, the deregulation of vesicular trafficking following flotillin upregulation, and through sphingosine kinase 2, emerges as a new mechanism of AXL overexpression and EMT-inducing signaling pathway activation.
3.

Optogenetic model reveals cell shape regulation through FAK and Fascin.

blue iLID NIH/3T3 RAW264.7 Control of cytoskeleton / cell motility / cell shape
J Cell Sci, 11 Jun 2021 DOI: 10.1242/jcs.258321 Link to full text
Abstract: Cell shape regulation is important but the mechanisms that govern shape are not fully understood, in part due to limited experimental models where cell shape changes and underlying molecular processes can be rapidly and non-invasively monitored in real time. Here, we use an optogenetic tool to activate RhoA in the middle of mononucleated macrophages to induce contraction, resulting in a side with the nucleus that retains its shape and a non-nucleated side which was unable to maintain its shape and collapsed. In cells overexpressing focal adhesion kinase (FAK), the non-nucleated side exhibited a wide flat morphology and was similar in adhesion area to the nucleated side. In cells overexpressing fascin, an actin bundling protein, the non-nucleated side assumed a spherical shape and was similar in height to the nucleated side. This effect of fascin was also observed in fibroblasts even without inducing furrow formation. Based on these results, we conclude that FAK and fascin work together to maintain cell shape by regulating adhesion area and height, respectively, in different cell types.
4.

An optogenetic method for interrogating YAP1 and TAZ nuclear-cytoplasmic shuttling.

blue LOVTRAP HaCaT Signaling cascade control
J Cell Sci, 1 Jun 2021 DOI: 10.1242/jcs.253484 Link to full text
Abstract: The shuttling of transcription factors and transcriptional regulators into and out of the nucleus is central to the regulation of many biological processes. Here we describe a new method for studying the rates of nuclear entry and exit of transcriptional regulators. A photo-responsive AsLOV (Avena sativa Light Oxygen Voltage) domain is used to sequester fluorescently-labelled transcriptional regulators YAP1 and TAZ/WWTR1 on the surface of mitochondria and reversibly release them upon blue light illumination. After dissociation, fluorescent signals from mitochondria, cytoplasm and nucleus are extracted with a bespoke app and used to generate rates of nuclear entry and exit. Using this method, we demonstrate that phosphorylation of YAP1 on canonical sites enhances its rate of nuclear export. Moreover, we provide evidence that, despite high intercellular variability, YAP1 import and export rates correlated within the same cell. By simultaneously releasing YAP1 and TAZ from sequestration, we show that their rates of entry and exit are correlated. Furthermore, combining the optogenetic release of YAP1 with lattice light-sheet microscopy revealed high heterogeneity of YAP1 dynamics within different cytoplasmic regions, demonstrating the utility and versatility of our tool to study protein dynamics.
5.

Control of SRC molecular dynamics encodes distinct cytoskeletal responses by specifying signaling pathway usage.

blue CRY2/CIB1 MDCK SYF Signaling cascade control Control of cytoskeleton / cell motility / cell shape
J Cell Sci, 25 Jan 2021 DOI: 10.1242/jcs.254599 Link to full text
Abstract: Upon activation by different transmembrane receptors, the same signaling protein can induce distinct cellular responses. A way to decipher the mechanisms of such pleiotropic signaling activity is to directly manipulate the decision-making activity that supports the selection between distinct cellular responses. We developed an optogenetic probe (optoSRC) to control SRC signaling, an example of a pleiotropic signaling node, and we demonstrated its ability to generate different acto-adhesive structures (lamellipodia or invadosomes) upon distinct spatio-temporal control of SRC kinase activity. The occurrence of each acto-adhesive structure was simply dictated by the dynamics of optoSRC nanoclusters in adhesive sites, which were dependent on the SH3 and Unique domains of the protein. The different decision-making events regulated by optoSRC dynamics induced distinct downstream signaling pathways, which we characterized using time-resolved proteomic and network analyses. Collectively, by manipulating the molecular mobility of SRC kinase activity, these experiments reveal the pleiotropy-encoding mechanism of SRC signaling.
6.

CLIC4 is a cytokinetic cleavage furrow protein that regulates cortical cytoskeleton stability during cell division.

blue CRY2/CIB1 CRY2/CRY2 HeLa Control of cytoskeleton / cell motility / cell shape
J Cell Sci, 14 May 2020 DOI: 10.1242/jcs.241117 Link to full text
Abstract: During mitotic cell division, the actomyosin cytoskeleton undergoes several dynamic changes that play key roles in progression through mitosis. Although the regulators of cytokinetic ring formation and contraction are well established, proteins that regulate cortical stability during anaphase and telophase have been understudied. Here, we describe a role for CLIC4 in regulating actin and actin regulators at the cortex and cytokinetic cleavage furrow during cytokinesis. We first describe CLIC4 as a new component of the cytokinetic cleavage furrow that is required for successful completion of mitotic cell division. We also demonstrate that CLIC4 regulates the remodeling of the sub-plasma-membrane actomyosin network within the furrow by recruiting MST4 kinase (also known as STK26) and regulating ezrin phosphorylation. This work identifies and characterizes new molecular players involved in regulating cortex stiffness and blebbing during the late stages of cytokinetic furrowing.
7.

Actin waves transport RanGTP to the neurite tip to regulate non-centrosomal microtubules in neurons.

blue LOVTRAP HeLa primary mouse cortical neurons primary mouse hippocampal neurons Control of cytoskeleton / cell motility / cell shape
J Cell Sci, 6 Apr 2020 DOI: 10.1242/jcs.241992 Link to full text
Abstract: Microtubule (MT) is the most abundant cytoskeleton in neurons and controls multiple facets of their development. While the MT-organizing center (MTOC) in mitotic cells is typically located at the centrosome, MTOC in neurons switches to non-centrosomal sites. A handful of cellular components have been shown to promote non-centrosomal MT (ncMT) formation in neurons, yet the regulation mechanism remains unknown. Here we demonstrate that the small GTPase Ran is a key regulator of ncMTs in neurons. Using an optogenetic tool that enables light-induced local production of RanGTP, we demonstrate that RanGTP promotes ncMT plus-end growth along the neurite. Additionally, we discovered that actin waves drive the anterograde transport of RanGTP. Pharmacological disruption of actin waves abolishes the enrichment of RanGTP and reduces growing ncMT plus-ends at the neurite tip. These observations identify a novel regulation mechanism of ncMTs and pinpoint an indirect connection between the actin and MT cytoskeletons in neurons.
8.

Cortical mitochondria regulate insulin secretion by local Ca2+ buffering.

blue CRY2/CIB1 INS-1E MIN6 Control of cytoskeleton / cell motility / cell shape Organelle manipulation
J Cell Sci, 29 Mar 2019 DOI: 10.1242/jcs.228544 Link to full text
Abstract: Mitochondria play an essential role in regulating insulin secretion from beta cells by providing ATP needed for the membrane depolarization that results in voltage-dependent Ca2+ influx and subsequent insulin granule exocytosis. Ca2+, in turn, is also rapidly taken up by the mitochondria and exerts important feedback regulation of metabolism. The aim of this study was to determine if the distribution of mitochondria within beta cells is important for the secretory capacity of these cells. We find that cortically localized mitochondria are abundant in beta cells, and that these mitochondria redistribute towards the cell interior following depolarization. The redistribution requires Ca2+-induced remodeling of the cortical F-actin network. Using light-regulated motor proteins, we increased the cortical density of mitochondria 2-fold and found that this blunted the voltage-dependent increase in cytosolic Ca2+ concentration and suppressed insulin secretion. The activity-dependent changes in mitochondria distribution are likely important for the generation of Ca2+ microdomains required for efficient insulin granule release.
9.

Real-time observation of light-controlled transcription in living cells.

blue CRY2/CIB1 U-2 OS
J Cell Sci, 9 Nov 2017 DOI: 10.1242/jcs.205534 Link to full text
Abstract: Gene expression is tightly regulated in space and time. To dissect this process with high temporal resolution, we introduce an optogenetic tool termed blue light-induced chromatin recruitment (BLInCR) that combines rapid and reversible light-dependent recruitment of effector proteins with a real-time readout for transcription. We used BLInCR to control the activity of a cluster of reporter genes in the human osteosarcoma cell line U2OS by reversibly recruiting the viral transactivator VP16. RNA production was detectable ∼2 min after VP16 recruitment and readily decreased when VP16 dissociated from the cluster in the absence of light. Quantitative assessment of the activation process revealed biphasic activation kinetics with a pronounced early phase in cells treated with the histone deacetylase inhibitor SAHA. Comparison with kinetic models of transcription activation suggests that the gene cluster undergoes a maturation process when activated. We anticipate that BLInCR will facilitate the study of transcription dynamics in living cells.This article has an associated First Person interview with the first author of the paper.
10.

Optogenetic interrogation of integrin αVβ3 function in endothelial cells.

blue TULIP murine lung endothelial cells Control of cytoskeleton / cell motility / cell shape
J Cell Sci, 1 Sep 2017 DOI: 10.1242/jcs.205203 Link to full text
Abstract: αVβ3 is reported to promote angiogenesis in some model systems but not in others. Here we used optogenetics to study effects of αVβ3 interaction with the intracellular adapter, kindlin-2, on endothelial cell functions potentially relevant to angiogenesis. Since interaction of kindlin-2 with αVβ3 requires the C-terminal three residues of the β3 cytoplasmic tail (Arg-Gly-Thr; RGT), optogenetic probes LOVpep and ePDZ1 were fused to β3ΔRGT-GFP and mCherry-kindlin2, respectively, and expressed in β3-null microvascular endothelial cells. Exposure of the cells to 450 nm (blue) light caused rapid and specific interaction of kindlin-2 with αVβ3 as assessed by immunofluorescence and TIRF microscopy, and it led to increased endothelial cell migration, podosome formation and angiogenic sprouting. Analyses of kindlin-2 mutants indicated that interaction of kindlin-2 with other kindlin-2 binding partners, including c-Src, actin, integrin-linked kinase and phosphoinositides, were also likely necessary for these endothelial cell responses. Thus, kindlin-2 promotes αVβ3-dependent angiogenic functions of endothelial cells through its simultaneous interactions with β3 and several other binding partners. Optogenetic approaches should find further use in clarifying spatiotemporal aspects of vascular cell biology.
11.

Cells lay their own tracks: optogenetic Cdc42 activation stimulates fibronectin deposition supporting directed migration.

blue iLID isolated MEFs mouse IA32 fibroblasts Control of cytoskeleton / cell motility / cell shape
J Cell Sci, 28 Jul 2017 DOI: 10.1242/jcs.205948 Link to full text
Abstract: Rho GTPase family members are known regulators of directed migration and therefore play key roles in processes including development, immune response and cancer metastasis. However, their individual contributions to these processes are complex. Here, we regulate the activity of two family members, Rac and Cdc42, by optogenetically recruiting specific GEF DH/PH domains to defined regions on the cell membrane. We find that the localized activation of both GTPases produce lamellipodia in cells plated on a fibronectin substrate. Using a novel optotaxis assay, we show that biased activation can drive directional migration. Interestingly, in the absence of exogenous fibronectin, Rac activation is insufficient to produce stable lamellipodia or directional migration while Cdc42 activation is sufficient. We find that a remarkably small amount of fibronectin (<10 puncta per protrusion) is necessary to support stable GTPase-driven lamellipodia. Cdc42 bypasses the need for exogenous fibronectin by stimulating cellular fibronectin deposition under the newly formed lamellipodia.
12.

Rac1 switching at the right time and location is essential for Fcγ receptor-mediated phagosome formation.

blue AsLOV2 RAW264.7 Control of cytoskeleton / cell motility / cell shape Control of vesicular transport
J Cell Sci, 9 Jun 2017 DOI: 10.1242/jcs.201749 Link to full text
Abstract: Lamellipodia are sheet-like cell protrusions driven by actin polymerization mainly through Rac1, a GTPase molecular switch. In Fcγ receptor-mediated phagocytosis of IgG-opsonized erythrocytes (IgG-Es), Rac1 activation is required for lamellipodial extension along the surface of IgG-Es. However, the significance of Rac1 deactivation in phagosome formation is poorly understood. Our live-cell imaging and electron microscopy revealed that RAW264 macrophages expressing a constitutively active Rac1 mutant showed defects in phagocytic cup formation, while lamellipodia were formed around IgG-Es. Because the activated Rac1 reduced the phosphorylation levels of myosin light chain, failure of the cup formation were probably due to inhibition of actin/myosin II contractility. Reversible photo-manipulation of the Rac1 switch in macrophages fed with IgG-Es could phenocopy two lamellipodial motilities: outward-extension and cup-constriction by Rac1 ON and OFF, respectively. In conjunction with FRET imaging of Rac1 activity, we provide a novel mechanistic model of phagosome formation spatiotemporally controlled by Rac1 switching within a phagocytic cup.
13.

Optogenetic activation reveals distinct roles of PIP3 and Akt in adipocyte insulin action.

blue CRY2/CIB1 3T3-L1 Signaling cascade control Control of vesicular transport
J Cell Sci, 13 Apr 2016 DOI: 10.1242/jcs.174805 Link to full text
Abstract: Glucose transporter 4 (GLUT4; also known as SLC2A4) resides on intracellular vesicles in muscle and adipose cells, and translocates to the plasma membrane in response to insulin. The phosphoinositide 3-kinase (PI3K)-Akt signaling pathway plays a major role in GLUT4 translocation; however, a challenge has been to unravel the potentially distinct contributions of PI3K and Akt (of which there are three isoforms, Akt1-Akt3) to overall insulin action. Here, we describe new optogenetic tools based on CRY2 and the N-terminus of CIB1 (CIBN). We used these 'Opto' modules to activate PI3K and Akt selectively in time and space in 3T3-L1 adipocytes. We validated these tools using biochemical assays and performed live-cell kinetic analyses of IRAP-pHluorin translocation (IRAP is also known as LNPEP and acts as a surrogate marker for GLUT4 here). Strikingly, Opto-PIP3 largely mimicked the maximal effects of insulin stimulation, whereas Opto-Akt only partially triggered translocation. Conversely, drug-mediated inhibition of Akt only partially dampened the translocation response of Opto-PIP3 In spatial optogenetic studies, focal targeting of Akt to a region of the cell marked the sites where IRAP-pHluorin vesicles fused, supporting the idea that local Akt-mediated signaling regulates exocytosis. Taken together, these results indicate that PI3K and Akt play distinct roles, and that PI3K stimulates Akt-independent pathways that are important for GLUT4 translocation.
14.

Subcellular optogenetics - controlling signaling and single-cell behavior.

blue red Cryptochromes LOV domains Phytochromes Review
J Cell Sci, 28 Nov 2014 DOI: 10.1242/jcs.154435 Link to full text
Abstract: Variation in signaling activity across a cell plays a crucial role in processes such as cell migration. Signaling activity specific to organelles within a cell also likely plays a key role in regulating cellular functions. To understand how such spatially confined signaling within a cell regulates cell behavior, tools that exert experimental control over subcellular signaling activity are required. Here, we discuss the advantages of using optogenetic approaches to achieve this control. We focus on a set of optical triggers that allow subcellular control over signaling through the activation of G-protein-coupled receptors (GPCRs), receptor tyrosine kinases and downstream signaling proteins, as well as those that inhibit endogenous signaling proteins. We also discuss the specific insights with regard to signaling and cell behavior that these subcellular optogenetic approaches can provide.
Submit a new publication to our database